skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ngu, Anne_Hee Hiong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Falls are the second leading cause of unintentional injury deaths worldwide. While numerous wearable fall detection devices incorporating AI models have been developed, none of them are used successfully in a fall detection application running on commodity-based smartwatches in real time. The system misses some falls, and generates an annoying amount of False Positives for practical use. We have investigated and experimented with an LSTM model for fall detection on a smartwatch. Even though the LSTM model has high accuracy during offline testing, the good performance of offline LSTM models cannot be translated to the equivalence of real-time performance. Transformers, on the other hand, can learn long-sequence data and patterns intrinsic to the data due to their self-attention mechanism. This paper compares three variants of LSTM and two variants of Transformer models for learning fall patterns. We trained all models using fall and activity data from three datasets, and the real-time testing of the model was performed using the SmartFall App. Our findings showed that in the offline training, the CNN-LSTM model was better than the Transformer model for all the datasets. However, the Transformer is a preferable choice for deployment in real-time fall detection applications. 
    more » « less